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A new class of completely conservative difference schemes is discussed; the exis- 
tence and uniqueness of a solution is guaranteed for schemes of the given class. 

Implicit difference schemes, which have a large reserve of stability [i], are useful 
for the numerical modeling of magnetohydrodynamic flows in many cases. Problems arise, how- 
ever, in connection with the algorithmic solvability of the corresponding systems of nonlinear 
algebraic equations with a large number of dimensions [1-3]. 

We have previously [4-6] investigated special classes of implicit difference schemes of 
gas dynamics and magnetohydrodynamics (MHD), the solvability of which is equivalent to the 
minimization of certain strongly convex functionals called dynamic potentials. Such schemes 
are referred to as locally barotropic. It has been shown that locally barotropic difference 
schemes have the property of complete conservatism [i] in the case of planar symmetry, i.e., 
difference analogs of the equations for the balance of different forms of energy are valid, 
along with the fundamental conservation laws, for these schemes. 

Numerous test and practical computations [i, 2, 7] show that completely conservative 
differenceschemes have a definite advantage over other schemes of the same order of approxima- 
tion, a fact that is most conspicuously evident on coarse space-time grids. 

In the present article we propose completely conservative locally barotropic MHD dif- 
ference schemes in Lagrangian variables for the cases of planar and axial symmetry, along 
with completely conservative locally barotropic gasdynamic difference schemes in application 
to computations of spherically symmetrical flows. 

i. DIFFERENTIAL EQUATIONS 

The evolution of a perfectly conducting MHD fluid in the one-dimensional adiabatic ap- 
proximation for the case of planar and axial symmetry in the presence of a two-component mag- 
netic field H = (0, Hy, H z) is described by the equations [i] 

P - T  +x~- '  a~ . . . . .  P + 8r~ , o, ( l )  

o (2) 0t08 + p ~ (xl-lu) = O, 

ax ( 3 )  

at 
oa = # (~), (4) 

1 __OA , gz=: 1 OB , l=__Ox  , A= x z - ~ J ,  (5) 
Hy--= Y &z A &z &z 

p = ~ (p, ~). ( 6 )  

Equat ions ( 1 ) - ( 6 )  desc r ibe  the problem w i t h  p lanar  symmetry f o r  E = i ,  and w i t h  a x i a l  symmetry 
for s = 2. For s : 2 the coordinate x is radial, and Hy denotes the azimuthal component of 
the field. 

We seek a solution of Eqs. (1)-(6) in the domain ~ = {0 _-< ~ .< i, t > 0}, with the fol- 
lowing boundary conditions specified at the boundary: 
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8.= . ~=o =: p~ (x(o ,  t), O, 

(7) 

We write the initial conditions in the form 

:c (~,  O) = ~, (~), u (~z, O) = ~ (~), 

,o (~, o ) - = - ~  (~), ~(~, o)=:  ~ ( ~ ) ,  

A (r O) = ~ (r B (~, O) =: ~ (c~). 

Here, according to Eqs. (4) and (5), the following compatibility conditions must be 
satisfied: 

~(~ ) ,~_ ,  (~) a ~  (,~) _ ~(~), 
&z 

(8)  

0----7-- , a - - - ~ '  = a ~  (~) : ~  - 

2. F~mLY OF LOCALLY B~mOT~OPIC DIFFERENCE SCHEMES 

_ In the domain ~ we introduce a uniform grid mh~ = ~h x ~. We associate with the nodes 
~h of the grid (i.e., with the set ]) the particle coordinate and velocity functions of a 
continuum, as well as the magnitudes of the magnetic fluxes: u, x, A, B e ${$, and we refer 
all thermodynamic variables and components of the magnetic field vector to the set m: p, p, 
p, ~, Hy, H z e ${~. 

In accordance with [6], we define the operators <<.>> and <<.>>*, which project the grid 
functions from ~{~ into ~m and from ~ into ~{~ and are such that 

( 9 )  <<e>>~ 

for any f e ~ and g e ~{~. 

We also consider the linear operators <af/aa>: ${~-+J{~+ and <8g/8~>*: ~{0~+-+${$ , 
which approximate the enclosed derivative at the points of the corresponding set and are such 
that for any functions f e $@~ and g e ${~+ 

, a/ ag > ?  h~, ( IO)  ~o:o-  e~,.:,: T ~ g; < o--? >'  h~ - ~_ h < a~ 
iC~o ]eo~ 

where 

~o=~Wg, < - - > , h ~  . (il) 

~em a~ 

We assume that the continu~l is locally barotropic [4-6], i.e., at every point ~ e ~ for 
values t ~ (tn, tn+l] the thermodynamic state of the medium is a function of the density p 
only, i.e., p(~, t) = P(p(~, t), c(e, tn)) , where c(a, t n) is some parameter (or several param- 
eters) evaluated in the preceding layer t = t n. 

We consider the two-parameter family of locally barotropic difference schemes [6] 

M u t = - -  xl-1 < ~ P + " 8n > h,~ + 

§ 80 OFo(xo, t.+~) - - f l y  OP~ (xN, l~+x) 
aXo ax~ ' 

met ~=__ [pS(x t-1 u(~ q- Q/-/, 

x t ~ u (~) , 

pY == m, 

(12) 

(13) 

(14) 

(15) 
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Hu = AA/S, Hz = AB/V, 

:= P (@ O. 

(16) 

(17) 

(18) 

The functions F 0 and F I introduced in Eq. (12) are defined as follows: 

Ix ' ~ =, [p~ (Xo, t)x~o - '  ] ( '~ '>-  aFo (Xo, t.+O 
8 ~  ~=0 0xo ' 

8~ =: [p~ (XN, t)xtN -~ 1(o,)__ aG (XN, t~+D 
OXx 

The system of equations (13)-(18) represents a closed conservative system of MHD dif- 
ference equations [6]. It has been shown [6] that for the given approximation (12) of the 
dynamical equation (i), even in our case (with o I = o 2 = 0.5), QH = 0(~) ~ 0, i.e., a re- 
distribution of energy takes place between its distinct forms: magnetic and thermal. This 
means that the scheme (12)-(18) is not completely conservative [I]. 

. ONE-PARAMETER FAMILY OF COMPLETELY CONSERVATIVE LOCALLY BAROTROPIC DIFFERENCE SCHEMES IN 
THE PRESENCE OF A SINGLE-COMPONENT MAGNETIC FIELD (Hz # 0, Hy ~ 0) 

H~ ) 
+ 8~ >*h~ + 

a X N  

We show that the difference equation s 

a ( _(oO Mu, -- - -  } t -*  < ~ ~' 

+ 80 a~o (}o, t~+,) --6N - -  - -  

a}o 
me t __ __ p(a,) V~, 
z lxl--I u(O,5) 

Xt = : 

pV : m,  

H ,  = A B / V ,  

~=P(~, ~) 

represent a completely conservative MHD scheme. 

The functions 90 and ~i introduced in Eq. (12') are determined from the relations 

8~ ax0 ' 

s ion 

(i2') 

(13') 

(14') 

(is) 

(16) 

(17) 

(18) 

(ig) 

xl-1(P(~ + 8---~----" i=N = Ox~ 

The v a r i a t i o n  of  the  magnetic  f i e l d  energy E H during the  t ime ~n is  given by the  expres-  

(E.), :: - / - 1  (H~ V),. 
8~ 

Making use of the frozen-in condition (16), we obtain an equation for the balance of magnetic 
energy on the layer: 

H~ ~ H~ R~ a (}~-' ~(0 '~>) 
(E.), 8 ~  V, - ~ - - -  < O~ > ha. ( 20 ) 

Mul t ip ly ing  the  equa t ion  of  motion (12 ' )  by u ( ~  we ob ta in  an equa t ion  fo r  the  v a r i a -  
t i o n  of the kinetic energy of a "fluid particle" E K = pu2/2 = pVu2/2 during the time ~n: 

(E,), = --  [ ~l-~ < ~ 0  (p(O,) + H~H~8______~_) >*h~ --80 0Fo(~,oxot~+l) + 8~ OF1 (XN,. t~+0 ] U(0,5 ) . (21) 
OXN 
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We multiply the balance equations for the magnetic (20) and kinetic energy (21): 

(E~ + Eu)r H~Hz8___]~___ < Ox z-tO~u(~ > h ~ - -  xZ-~ • 

(22) 
" 0 (p(ff,) + "zHz )>*hg @ [~0 0No(;~ ~n+l) ~N 0FI(;N, Cn+l) ] U(0 ,5> 

x "'~176 < - 2 ~ -  8--7"~ . o4 & ~ - -  

We sum the resulting equation over the grid ~h and take into account the definition of 
the functions ~0 and ~z (19). We obtain the law of conservation of the total energy 

O~ ~-~ u(o,s) 
(e~ + s.)~,~ = ~ pl ~ <---- >, ~ .  

We thus have shown that not only the finite-difference laws of conservation of mass (15), 
momentum (12'), and total energy (22) as in the case of classical conservative scheme, but 
also a number of additional grid relations hold for the family of difference schemes (12')- 
(14'), (15)-(18), viz.: the laws of conservation of specific internal energy (13'), magnetic 
energy (20), and kinetic energy (21) and the law governing the volume variation, which has 
the form (15) for the given scheme, i.e., the scheme (12')-(14'), (15)-(18) is completely 
conservative. 

4. DISCRETE DYNAMIC POTENTIALS AND THEIR PROPERTIES 

We analyze the assumptions regarding the parameters ~n and o I in order for a solution 
of the system of equations (12')-(14'), (15)-(i8) to exist and be unique. 

Let 6x ~ ~K be an infinitesimal variation of the grid function x e ~7. We multiply 
(12') by 6x and sum over the grid ~: 

Substituting 

6(l)n-tl = " mi ~n 8~ 
-.pg(~'> )~-~ a~o + p?("'> ?iv ~ 6L- . 

~,l __ Xl 
T n --- U 

and 

)i ~9i ] -  

( 1 - - c q )  p, Y( (z ,  P) =- 

P (~, c (:, tn)) d~ > 0 
=:I 

in Eq. (23), we obtain 

where 

- -  ^ 

r  r  ' + " === r (7) (;) - Fo (Xo, + K ~n~-I trt']-l) F1 (~N, ~n'-bl), 

(23) 

(24) 

*:+,(;)= E 2m, I<<;'>>; ' ~c~ ~ ( 21in f I%--7- [(1 -- 2) << xZ~ -u-2~ >>~ + 

§ (l -- I) << xlln x>>i]- <~ ux>>i } ; 
I 

- () qSn+~ (x) -: - -  ~ I (AB)~ In Vi 
,~  ~ ~ 7  " 

The q u a n t i t i e s  ~n+z(.x) a re  c a l l e d  d i s c r e t e  dynamic p o t e n t i a l s ,  and ~Kn+z(x), ~Pn+t(x) ,  
and ~Hn+1(x) are called their kinetic, thermodynamic, and magnetic components [i-3]. Conse- 
quently, the dynamic equation (12') determines a stationary point of the functional ~n+1(x) 
with respect to the variables xi, i ~ ~. This means that Eq. (12') can be written 
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o~Dn+ 1 (xr 
ax~ = 0, i, ]6~o. (12") 

We analyze the functional Cn+~(x) inside the convex cone ~ = ~ (l~+l) ---z {X 6 ~-'V(X i > 0} , 
It is obviously continuous on the set ~ and tends to 4"~ at its boundaries. 

The second differential of ~n+~(x) has the form 

where 

== d q).+t (x)+d-CV.+~(x) -r ,. "~'.+t (x) - -  

0" ~"o dx 2 -5-  0"- 1:, dx~, 

d.O,ap 2,n~ [ << d:~ >~] ( / - -1)  xtdx  2 ] 

d" @~+1 (x) = e tm~ ^o dx; - '- (1 - -o , ) ( t  - -  1)p~df,'~ , 
~ e , o  . Ox[ 

C[2(DH4~I (f) :-= X V '2"z d~r2 
' ieto 8~Vi i " 

I t  i s  ev iden t  from express ions  (25) t h a t  i f  the  c o n d i t i o n s  

x~ ~. ( l -  1)x' ,  

O~Y >>. O, 0" ?'o o-7"~ ---v--' < o, o 

(25) 

(26) 

are satisfied and if el ~ 0 for s = i, el ~ 1 for s = 2, the inequality d2r > 0 will 
hold, i.e., the functional ~n+~(x) is strongly convex inside the convex cone ~, and so the 
dynamic equation (12') determines the unique point at which the functional has a global mini- 
mum [8]. 

We note that in the absence of a magnetic field (H z ~ Hy s 0) it is also possible to 
construct completely conservative locally barotropic gasdynamic difference schemes for s = 3. 
In this case the dynamic potential ~n+~(x) is given by expression (24) for #Hn+~(x) ~ 0. It 
is obvious that d2~n+~(x) > 0 under conditions (26) and oi ~ 0 for s = I, el ~ 1 for s = 2, 
3. 

Thus, when the kinetic equation (3) is approximated by expression (14'), it is possible 
to construct completely conservative locally barotropic gasdynamic and MHD difference schemes. 
We note that a difference approximation of Eq. (3) in the form x t = u(O=) is discussed in 
[3-6]. 

It is important to note that a combination of the paraboloid method and the steepest- 
descent method can be used for the numerical determination of the minima of the dynamic 
potentials [9]. 

NOTATION 

t, time; x, Eulerian variable; ~, Lagrangian variable; p, density of medium; p = p(~) ~ 
P0 > 0, Lagrangian density of medium; u, velocity; p, pressure; e, internal energy: Hy, Hz, 
magnetic field components; A = A(~), B = B(~), magnitudes of magnetic fluxes formed by respec- 
tive components Hy, Hz; J = 8x/8~, Jacobian of transformation from Eulerian to Lagrang!an 
variables; s integer-valued parameter, equal to 1 or 2; ~ = {0 ~ ~ ~ i, t ~ 0}, ~h~ = mh x mT, 
uniform grid in domain ~, m h = {~i+x = ~i + h~, =i+i/2 =_(i + i/2)hu, i = 0, i, .~., N - i, 
s 0 = 0, a N = i}, m~ = {tn+ I = t n + ~n, n = 0, i, .• m, sets of nodes of grid mh; m, set 
of centers ~i+i/2 = (i + i/2)h~ of meshes of grid mh, m+ = m U 81~; 81~ , right_boundary of 
set ~; ~e~, JCo and,~+ , sets of grid functions specified on (respectively) m, ~ and m+; 
<3 /~e>, linear operator projecting ~{~ onto ${o+ and approximating the corresponding deriva- 
tive <a-/8=>*, conjugate operator mapping ~o+ into~ ; <<.>>, linear operator projecting 
grid functions from f~ into ~o ; <<->>*, linear operator projecting grid functions from 
~'. into ${K:; Si(x) = <Sx/d~>ih~; Vi(x) = s 8xs > ih~; pj(~)h~ = mj; <~A/8~>ih ~ = 
(&A)i; <SB/8~>ih = = (&B)i; Mj = <<m>>j*, i e m, j e m; y = yi n = Y(Xi, tn), ' 9 = yn+l, Yt = 
(9 - Y)/rn, y(o) = ~y + (i - o)y, where y is a grid function; el > 0, o= > 0, weighting 
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parameters; QH, imbalance term; 6 o = ~0i, 6N = 6Ni, i e ], ~ij, Kronecker delta symbol; EH, 
magnetic field energy; EK, kinetic energy; Cn+1(x), discrete dynamic potential; ~r 
variation of functional #n+l(x). 
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